Ingo Weiss:
# //JavaScript:
# dlng = p2_lng - p1_lng
# dlat = p2_lat - p1_lat
# a = (sin(dlat/2))^2 + cos(p1_lat) * cos(p2_lat) * (sin(dlon/2))^2
# c = 2 * atan2( sqrt(a), sqrt(1-a) )
# distance = R * c (where R is the radius of the Earth)
···
#
#
# #Ruby:
# dlng = p2_lng - p1_lng
# dlat = p2_lat - p1_lat
# a = (Math.sin(dlat/2))**2 + Math.cos(p1_lat) * Math.cos(p2_lat) *
# (Math.sin(dlng/2))**2
# c = 2 * Math.atan2( Math.sqrt(a), Math.sqrt(1-a) )
# distance = 6373 * c #(radius of the Earth: 6373km
#
#
# Any idea why the Ruby one returns incorrect numbers?
1) can you post sample running codes on both? (eg what are the values of p2_lang, etc)
2) do you have test cases? (so we know what to expect)
kind regards -botp
Peña wrote:
Ingo Weiss:
# //JavaScript:
# dlng = p2_lng - p1_lng
# dlat = p2_lat - p1_lat
# a = (sin(dlat/2))^2 + cos(p1_lat) * cos(p2_lat) * (sin(dlon/2))^2
# c = 2 * atan2( sqrt(a), sqrt(1-a) )
# distance = R * c (where R is the radius of the Earth)
# # # #Ruby:
# dlng = p2_lng - p1_lng
# dlat = p2_lat - p1_lat
# a = (Math.sin(dlat/2))**2 + Math.cos(p1_lat) * Math.cos(p2_lat) *
is dlng a typo, the first formula uses dlon?
···
# (Math.sin(dlng/2))**2
# c = 2 * Math.atan2( Math.sqrt(a), Math.sqrt(1-a) )
# distance = 6373 * c #(radius of the Earth: 6373km
# # # Any idea why the Ruby one returns incorrect numbers?
1) can you post sample running codes on both? (eg what are the values of p2_lang, etc)
2) do you have test cases? (so we know what to expect)
kind regards -botp
Turned out that I needed to convert the numbers to radians. Here is the
code that worked:
#Calculate distance between 2 coordinate points (decimal lat/lng),
expressed in km
#This is an approximation since it assumes the earth to be a perfect
sphere
def calculate_distance(p1, p2)
# radius_of_earth = 3963.0 #miles
radius_of_earth = 6373.0 #kilometers
#convert position to decimal and radians:
to_rad = 180/Math::PI
p1_lat = degmin_to_dec(p1.lat) / to_rad
p1_lng = degmin_to_dec(p1.lng) / to_rad
p2_lat = degmin_to_dec(p2.lat) / to_rad
p2_lng = degmin_to_dec(p2.lng) / to_rad
#calculate distance:
distance = radius_of_earth * Math.acos(Math.sin(p1_lat) *
Math.sin(p2_lat) + Math.cos(p1_lat) * Math.cos(p2_lat) * Math.cos(p2_lng
- p1_lng))
end
Ingo
···
--
Posted via http://www.ruby-forum.com/.