[SUMMARY] Sodoku Solver (#43)

What's the deal? Is it Sodoku, Sudoku, Su Doku, or what?

I wasn't aware of all the name variations when I wrote this quiz. It looks like
the actual number puzzle is usually called Sudoko, now that I've looked into it.
However, some seem to consider Sodoku a slightly different form of the game
which can have multiple solutions, while "true" Sudoku should have exactly one.
This fact complicated solutions a little, so I thought it was worth bringing up
before we dig into them.

The solutions to this quiz are quite varied and interesting. We have raw speed,
clever algorithms, java ports, and even not-quite-correct approaches. I learned
a lot digging trough the code and I encourage others to do the same.

I would say the overriding theme this time though was the sheer amount of code
that came in. Most of the solutions were over two hundred lines, a few even
over three hundred. This probably tells us that the problem was tricky, but I
also found some plenty wordy expressions in there. Let's look at some of those,
since I believe that rethinking code can be very instructive. Here's a method
from the first submission of David Brady's solution:

  # Loads the @board array from a string matching the example above.
  def load(str)
    line_num = 0
    str.each_line do |line|
      line.gsub! '+', ''
      line.gsub! '-', ''
      line.gsub! '|', ''
      line.gsub! ' ', ' '
      line.gsub! '_', '0'
      line.strip!
      if line.length > 0
        l = line.split
        fail "Line length was #{l.length}" unless l.length == 9
        @board[line_num] = l.collect {|x| x.to_i}
        line_num += 1
      end
    end

    fail "Board is not valid." unless self.valid?
  end

This code parses the puzzle input format and uses it to load the initial @board,
which is just and Array (rows) of Arrays (columns). It's currently doing this
by cleaning up the lines and reading each integer. Can we smooth that out a
little?

Often with Ruby, having to use an index is a sign that you're not attacking the
problem in the easiest way. Each index is being used to completely replace a
line, so let's see if we can just append them directly:

  # Loads the @board array from a string matching the example above.
  def load(str)
    @board = Array.new
  
    str.each_line do |line|
      line.gsub! '+', ''
      line.gsub! '-', ''
      line.gsub! '|', ''
      line.gsub! ' ', ' '
      line.gsub! '_', '0'
      line.strip!
      if line.length > 0
        l = line.split
        fail "Line length was #{l.length}" unless l.length == 9
        @board << l.collect {|x| x.to_i}
      end
    end

    fail "Board is not valid." unless self.valid?
  end

That only saved one line I guess, but conceptually it's getting easier for me to
follow already. That's always a win, I think.

Let's tackle the text processing. My first instinct was:

  # Loads the @board array from a string matching the example above.
  def load(str)
    @board = Array.new

    str.each_line do |line|
      line.delete! '|+-'
      line.tr! '_', '0'
      line.squeeze!
      line.strip!
      if line.length > 0
        l = line.split
        fail "Line length was #{l.length}" unless l.length == 9
        @board << l.collect {|x| x.to_i}
      end
    end

    fail "Board is not valid." unless self.valid?
  end

Again, only two lines trimmed, but I'm actually helping myself to understand
what exactly this code is doing and that's far more important to me.

I now see that we're stripping non-digit or underscore characters. We're
leaving the spaces however, so we can later split() on whitespace to get each
cell. That gets me thinking: We don't have to split() on whitespace. If I can
get it down to just what I'm after, we can split() on characters:

  # Loads the @board array from a string matching the example above.
  def load(str)
    @board = Array.new

    str.each_line do |line|
      line.delete! '^0-9_'
      if line.length > 0
        l = line.split('')
        fail "Line length was #{l.length}" unless l.length == 9
        @board << l.collect {|n| Integet(n) rescue 0 }
      end
    end

    fail "Board is not valid." unless self.valid?
  end

Note that I did change the collect() to be more obvious, since I removed
translation of '_' to '0'. This isn't strictly needed, as String.to_i() will
return 0 if it can't form a number, but I'm trying not to damage the readability
of this code with my changes.

We're getting close, I can tell, but there's another trick or two left. We have
to check the line length to see if it's one of the lines that contains cells or
just a border row. If we skip border rows altogether, we could the switch our
focus from deleting the unwanted data to grabbing wanted data. (Gavin Kistner
originally pointed this out on Ruby Talk.) Let's see what that does for us:

  # Loads the @board array from a string matching the example above.
  def load(str)
    @board = Array.new

    str.each_line do |line|
      next unless line =~ /\d|_/
      @board << line.scan(/[\d_]/).collect {|n| Integet(n) rescue 0 }
      fail "Length was #{@board.last.length}" unless @board.last.length == 9
    end

    fail "Board is not valid." unless self.valid?
  end

Moving the line verification to after I load @board also allowed me to do away
with the extra variable, as you can see.

To me, that removes a lot of the wordiness of the original code, without
sacrificing clarity or functionality. It's probably a touch more efficient too,
since we trimmed quite a few operations.

I believe Adam Shelly's parse routine could benefit from similar simplifications
if you want to try your own hand at a little refactoring.

Here's another chunk of code (from Horndude77's solution) just crying out for
some help:

  def solve
    #is there a better way to do this? it seems messy
    # and redundant.
    changed = true
    while(changed && @unknown.length>0)
      changed = false
      changed = eliminateall ? true : changed
      changed = checkallrows ? true : changed
      changed = eliminateall ? true : changed
      changed = checkallcols ? true : changed
      changed = eliminateall ? true : changed
      changed = checkallboxes ? true : changed
    end
    puts self
    if(@unknown.length>0)
      puts "I can't solve this one"
    end
  end

I told myself that was too easy and had the following knee-jerk reaction:

  def solve
    changed = true
    while(changed && @unknown.length>0)
      changed = eliminateall || checkallrows || eliminateall ||
                checkallcols || eliminateall || checkallboxes
    end
    puts self
    if(@unknown.length>0)
      puts "I can't solve this one"
    end
  end

That's cute, and may even work if the underlying algorithms aren't sensitive to
the call order, but it is not identical in function to the original code. The
original method calls all of those methods and just tracks to see if any one of
them returned true. The second version will short-circuit the call chain as
soon as a method returns true. We'll have to be a bit more clever to avoid
that:

  def solve
    changed = true
    while(changed && @unknown.length>0)
      changed = %w{ eliminateall checkallrows eliminateall
                    checkallcols eliminateall checkallboxes }.map do |m|
        send(m)
      end.include?(true)
    end
    puts self
    if(@unknown.length>0)
      puts "I can't solve this one"
    end
  end

That should be equivalent to the original, I believe, minus some repetition.

My point in showing the above examples wasn't to pick on anyone and I apologize
if I gave any offense. I just wanted to explore a little idiomatic Ruby through
some examples.

Back to Sudoku itself. Let's look at a solution. Here's the beginning of
Dominik Bathon's solver class:

  class SudokuSolver

      # sudoku is an array of arrays, containing the rows, which contain the
      # cells (all non valid entries are interpreted as open)
      def initialize(sudoku)
          # determine @n / @sqrt_n
          @n = sudoku.size
          @sqrt_n = Math.sqrt(@n).to_i
          raise "wrong sudoku size" unless @sqrt_n * @sqrt_n == @n

          # populate internal representation
          @arr = sudoku.collect { |row|
              # ensure correct width for all rows
              (0...@n).collect { |i|
                  # fixed cell or all values possible for open cell
                  ((1..@n) === row[i]) ? [row[i]] : (1..@n).to_a
              }
          }

          # initialize fix arrays
          # they will contain all fixed cells for all rows, cols and boxes
          @rfix=Array.new(@n) { [] }
          @cfix=Array.new(@n) { [] }
          @bfix=Array.new(@n) { [] }
          @n.times { |r| @n.times { |c| update_fix(r, c) } }

          # check for non-unique numbers
          [@rfix, @cfix, @bfix].each { |fix| fix.each { |x|
              unless x.size == x.uniq.size
                  raise "non-unique numbers in row, col or box"
              end
          } }
      end
    
    # ...

This constructor takes an Array of Arrays, which is simply the board setup read
from the input file. After finding the board size, you can see the method
builds its internal Array (rows) of Arrays (columns) of Arrays (possible numbers
for that cell). Known cells are set to a one element member with the known
value, while other cells are set to an Array of all the possible numbers.

Next, we see that the code also builds representations for rows, columns, and
boxes and repeatedly calls update_fix(), we assume to populate them.

The method ends with a puzzle validation check, ensuring that there are no
duplicate numbers in rows, columns or boxes.

Jumping a little out of order now, let's examine the private methods used by the
constructor:

    # ...
    
    private

    # returns the box index of row r and col c
    def rc2box(r, c)
         (r - (r % @sqrt_n)) + (c / @sqrt_n)
    end

    # if row r, col c contains a fixed cell, it is added to the fixed arrays
    def update_fix(r, c)
        if @arr[r][c].size == 1
            @rfix[r] << @arr[r][c][0]
            @cfix[c] << @arr[r][c][0]
            @bfix[rc2box(r, c)] << @arr[r][c][0]
        end
    end
    
    # ...

From here we can see that the rows, columns, and boxes tracking variables only
receive a number that has been narrowed down to a single possibility. Because
of that simplification, these are just two dimensional Arrays. Note that each
new-found number is just appended to the Array. These will not be in the same
order as they really appear in the puzzle, but since they're just used to verify
uniqueness it doesn't matter.

The first method, rc2box() just uses math to locate which box we're in, given a
row and column.

Back to the public methods:

    # ...
    
    public

    # returns the internal representation as array of arrays
    def to_a
        @arr.collect { |row| row.collect { |x|
            (x.size == 1) ? x[0] : nil
        } }
    end
    
    # returns a simple string representation
    def to_s
        fw = @n.to_s.size
        to_a.collect { |row| row.collect { |x|
            (x ? x.to_s : "_").rjust(fw)
        }.join " " }.join "\n"
    end
    
    # returns whether the puzzle is solved
    def finished?
        @arr.each { |row| row.each { |x| return false if x.size > 1 } }
        true
    end
    
    # ...

The above methods allow you to query the solver for an Array representation, a
String representation, or just to find out if it is finished being solved yet.
Starting with to_a(), you can see that it basically just flattens the third
dimension of Arrays either into a known number choice, or nil for unknowns. The
next method, to_s(), calls to_a(), stringifies, and join()s the results.

On to the actual solving code:

    # ...
    
    # for each cell remove the possibilities, that are already used in the
    # cell's row, col or box
    # return if successful
    def reduce
        success = false
        @n.times { |r| @n.times { |c|
            if (sz = @arr[r][c].size) > 1
                @arr[r][c] = @arr[r][c] -
                    (@rfix[r] | @cfix[c] | @bfix[rc2box(r, c)])
                raise "impossible to solve" if @arr[r][c].empty?
                # have we been successful
                if @arr[r][c].size < sz
                    success = true
                    update_fix(r, c)
                end
            end
        } }
        success
    end
    
    # ...

This method is a simple, but important, piece of the solving task. It simply
walks cell by cell reducing the possibilities by what we already know. It uses
the Array union operator (|) to combine all known numbers for the row, column
and box of this cell. All of those numbers are then removed from the
possibilities using the Array difference operator (-). When any cell shrinks in
choices, update_fix() is called again to notify row, column, and box of the
change. As long as a single cell lost a single possibility this method returns
true to report progress.

Here's another solving method:

    # ...
    
    # find open cells with unique elements in their row, col or box
    # return if successful
    # reduce must return false when this method is called (if the
    # possibilities aren't reduced, bad things may happen...)
    def deduce
        success = false
        [:col_each, :row_each, :box_each].each { |meth|
            @n.times { |i|
                u = uniqs_in(meth, i)
                unless u.empty?
                    send(meth, i) { |x|
                        if x.size > 1 && ((u2 = u & x).size == 1)
                            success = true
                            u2
                        else
                            nil
                        end
                    }
                    # change only one row/col/box at a time
                    return success if success
                end
            }
        }
        success
    end
    
    # ...

Another way to be sure of a cell is to find a unique possibility in the row,
column, or box. In other words, if two is a possibility in the fifth cell of a
row, but not a possibility in any other cell of the row, we know it belongs in
the fifth cell and we can place it.

This code hunts for that using iterators to get all the cells in a row, column,
or box and the helper method uniqs_in(), which performs the search I just
explained. When a unique option is found, the code places it and returns true
to indicate progress.

Here are all four private helper methods:

    # ...
    
      private

      # yields each cell of row r and assigns the result of the yield unless
      # it is nil
      def row_each(r)
          @n.times { |c|
              if (res = yield(@arr[r][c]))
                  @arr[r][c] = res
                  update_fix(r, c)
              end
          }
      end
      # yields each cell of col c and assigns the result of the yield unless
      # it is nil
      def col_each(c)
          @n.times { |r|
              if (res = yield(@arr[r][c]))
                  @arr[r][c] = res
                  update_fix(r, c)
              end
          }
      end
      # yields each cell of box b and assigns the result of the yield unless
      # it is nil
      def box_each(b)
          off_r, off_c = (b - (b % @sqrt_n)), (b % @sqrt_n) * @sqrt_n
          @n.times { |i|
              r, c = off_r + (i / @sqrt_n), off_c + (i % @sqrt_n)
              if (res = yield(@arr[r][c]))
                  @arr[r][c] = res
                  update_fix(r, c)
              end
          }
      end

      # find unique numbers in possibility lists of a row, col or box
      # each_meth must be :row_each, :col_each or :box_each
      def uniqs_in(each_meth, index)
          h = Hash.new(0)
          send(each_meth, index) { |x|
              x.each { |n| h[n] += 1 } if x.size > 1
              nil # we didn't change anything
          }
          h.select { |k, v| v == 1 }.collect { |k, v| k }
      end
  
    # ...

The iterators are pretty obvious. The only gotcha to their use is that the
block is expected to return true or false, indicating if the cell was updated.
This allows the iterator to call update_fix() and keep the internal
representations in sync.

The uniqs_in() method just uses those iterators to fill a Hash with seen counts
and then returns all keys that were only seen once.

Finally, we start to see it all come together with the next method:

    # ...
    
    public
    
    # tries to solve the sudoku with reduce and deduce
    # returns one of :impossible, :solved, :unknown
    def solve
        begin
            until finished?
                progress = false
                while reduce
                    progress = true
                end
                progress = true if deduce
                return :unknown unless progress
            end
            :solved
        rescue
            :impossible
        end
    end
    
    # ...

This method just combines calls to to the previously seen reduce() and deduce()
to see if it can use process of elimination to solve the problem. It loops as
long as either method reports some progress. It will eventually return :solved,
if finished?() declares the puzzle done, or :unknown if it runs out of
reductions and deductions. :impossible is returned in the event of a problem.

The above can solve some puzzles quickly and efficiently, but it's not a
complete solution. When it won't go any father, it's time for some guess work:

    # ...
    
      # solves the sudoku using solve and if that fails, it tries to guess
      # returns one of :impossible, :solved, :multiple_solutions
      def backtrack_solve
          if (res = solve) == :unknown
              # find first open cell
              r, c = 0, 0
              @rfix.each_with_index { |rf, r|
                  break if rf.size < @n
              }
              @arr[r].each_with_index { |x, c|
                  break if x.size > 1
              }
              partial = to_a
              solutions = []
              # try all possibilities for the open cell
              @arr[r][c].each { |guess|
                  partial[r][c] = guess
                  rsolver = SudokuSolver.new(partial)
                  case rsolver.backtrack_solve
                  when :multiple_solutions
                      initialize(rsolver.to_a)
                      return :multiple_solutions
                  when :solved
                      solutions << rsolver
                  end
              }
              if solutions.empty?
                  return :impossible
              else
                  initialize(solutions[0].to_a)
                  return solutions.size > 1 ? :multiple_solutions : :solved
              end
          end
          res
      end

  end
  
  # ...

Note that this method begins by calling solve(). If it yields a complete
solution, the rest of the work can be skipped. Even if it doesn't though, it
should have reduced the possibilities, making the coming job easier.

The next bit of code locates a cell to start guessing with. Rows are scanned to
find one that hasn't been completely filled in, then columns are scanned to find
a cell with more than one possibility. Note how those two iterations
purposefully clobber the local variables (r and c), so they will hold the final
address of the cell when scanning is done.

Finally, we're to the guess work. An Array is prepared to hold solutions and
the current known cells are retrieved with a call to to_a(). Then, each
possibility for the selected cell is inserted and a new solver is built and run.
This amounts to recursion of the entire process. The results of these guesses
are examined by a case statement and added to the solutions Array when found.
The case statement ignores :impossible returns, since these are just wrong
guesses.

Finally the method checks to see if any solutions were found, and returns the
proper Symbol for the results.

The last little chunk of code handles input and output for the solution:

  # ...

  if $0 == __FILE__
      # read a sudoku from stdin
      sudoku = []
      while sudoku.size < 9
          row = gets.scan(/\d|_/).map { |s| s.to_i }
          sudoku << row if row.size == 9
      end
      # solve
      begin
          solver = SudokuSolver.new(sudoku)
          puts "Input:", solver
          case solver.backtrack_solve
          when :solved
              puts "Solution:"
          when :multiple_solutions
              puts "There are multiple solutions!", "One solution:"
          else
              puts "Impossible:"
          end
          puts solver
      rescue => e
          puts "Error: #{e.message}"
      end
  end

Look at that four line input read up there. Its similar to what we reduced the
other code to at the beginning of this summary. The output is very straight
forward. It just makes good use of to_s() in the solver object to print the
board before and after.

My thanks to all who sent in their solutions, sometimes many, many times. :wink:

Next week's Ruby Quiz is shamelessly stolen from another source of Ruby
challenges. Stay tuned to see the kind of problems Dave Thomas cooks up...

Ruby Quiz wrote:

To me, that removes a lot of the wordiness of the original code, without
sacrificing clarity or functionality. It's probably a touch more efficient too,
since we trimmed quite a few operations.

Ahhh... but:

Loaded suite test_sodoku
Started
F.F..FFFFFF.F..FF.F
Finished in 9.439033 seconds.
[verbose results snipped]
19 tests, 27 assertions, 12 failures, 0 errors

My code may be wordier, but it's also workier. :slight_smile:

Actually the only thing wrong with your code is that you pulled a Knuth: "Beware of bugs in the above code; I have merely proved it correct, not tried it." Your load function calls "Integet" instead of "Integer". Because of the rescue 0, the script never lets you know that anything's wrong. Also, using an exception to handle normal behavior seems smelly to me, but that's a style question.

I tried tightening the rescue to only rescue the expected ArgumentError, and ended up with this mess:

@board << line.scan(/[\d_]/).collect {|n| begin; Integer(n); rescue ArgumentError; 0; end }

This works, and "Integet" correctly pukes out a NoMethodError, but it seems like a lot of work to clean up a syntax error that was getting caught (indirectly) by the unit tests anyway. So I decided to clean it up by eliminating the smell coming from the rescue in the first place. I liked this code a lot better, as it was more "up front" about the '_'->'0' conversion:

# convert '_' to '0' and turn digit chars into integers.
@board << line.tr!('_','0').scan(/[\d_]/).collect {|n| Integer(n) }

A major part of this exercise for me was learning to work with test/unit. I actually had a few bugs caused by my ignorance of how Ruby works get caught by my unit tests. Specifically, Sodoku#copy_board got written after I spent an hour trying to figure out why @board = other.board.dup was STILL returning aliased arrays. (Answer: @board *was* getting dup'ed. But @board[0] is ALSO an array, which was aliased. copy_board fixes this with a 2-level dup.)

Having unit tests allowed me to verify your refactoring, as well as probe my own solutions fearlessly in a language I am still coming to grips with.

Nifty.

-dB

···

--
David Brady
ruby-talk@shinybit.com
I'm having a really surreal day... OR AM I?

Ok, I admit I'm a ruby newbie. But I'm trying to learn the Ruby Way.
How's this?

Was:
def ParseBoard(file)
   row = 0
   col = 0
   boxes = 0
   boardlist =
   file.each do |line|
       line.chomp.each_byte do |c|
           case c
               when ?0..?9
                   boardlist << c.to_i - ?0
                   col+=1
               when ?A..?Z
                   boardlist << c.to_i - ?A + 10
                   col+=1
               when ?a..?z
                   boardlist << c.to_i - ?a + 10
                   col+=1
               when ?_
                   boardlist << -1
                   col+=1
               when ?+
                    boxes+=1 if row == 0
           end
       end
       if (col > 0) then
           row+=1
           break if (row == col)
       end
       col=0
   end
   @@boxcols = boxes-1
   return boardlist,row
end

Is:
def ParseBoard(file)
    boardlist,size = ,0
    file.each do |line|
        if line.delete!('^0-9A-Za-z_+') =~ /\++/
            @@boxcols= line.length-1
        else
            boardlist += line.split(//).collect{|n| n.hex }
            size = line.length
        end
        p line
    end
    boardlist,size
end

The only difference is it adds 0's to the boardlist where it used to
add -1's, but the solver constructor handles anything outside 1..size
the same, so it doesn't matter.
It doesn't handle malformed input well, but neither did the old
version. That's for another exercise, maybe.

-Adam

···

On 8/25/05, Ruby Quiz <james@grayproductions.net> wrote:

I believe Adam Shelly's parse routine could benefit from similar simplifications
if you want to try your own hand at a little refactoring.

Is it ok to reply to your summary?

I don't wan't to to be rude in any way, but i thought Davids
reasoning on Array operators:

"Using a set probably would have been better, but I didn't know about Ruby sets until after I finished my code. So my solution is a very elegant way of wielding a stone axe."

should have found it's way into the summary, especially as all the
samples given are wielding the same ancient weapon.

or to put it with your own words:

"Then you'll want to look at the standard "set" library.
That will make your whole weekend."

Just a thought of mine, it seemed to be one of the gotchas in this
quiz. Keep up the very good work!

cheers

Simon

Thank you for bringing my error to my attention. I've corrected it on the Ruby Quiz web site.

James Edward Gray II

···

On Aug 25, 2005, at 12:42 PM, David Brady wrote:

Actually the only thing wrong with your code is that you pulled a Knuth: "Beware of bugs in the above code; I have merely proved it correct, not tried it." Your load function calls "Integet" instead of "Integer".

I believe Adam Shelly's parse routine could benefit from similar simplifications
if you want to try your own hand at a little refactoring.

Ok, I admit I'm a ruby newbie. But I'm trying to learn the Ruby Way.
How's this?

<laughs> No worries there!

[snip old code]

def ParseBoard(file)
    boardlist,size = ,0
    file.each do |line|
        if line.delete!('^0-9A-Za-z_+') =~ /\++/

Beware the bang methods (ending in !) in Ruby. Obviously it's fine to use them, but it's almost never a good idea to chain them. Most of them return nil when they don't make a change and nil doesn't support very many calls, like the =~ operator you use here. Feed it the wrong line and the code will crash.

In this case, you should be able to just drop the !, as delete() returns a copy of the String when nothing changes.

            @@boxcols= line.length-1
        else
            boardlist += line.split(//).collect{|n| n.hex }
            size = line.length
        end
        p line
    end
    boardlist,size
end

It's definitely looking more Rubyish, I would say. Have a look at how the other solutions parsed the input, if you want to compare.

James Edward Gray II

···

On Aug 25, 2005, at 4:10 PM, Adam Shelly wrote:

On 8/25/05, Ruby Quiz <james@grayproductions.net> wrote:

Is it ok to reply to your summary?

Always. Definitely. The number one goal of Ruby Quiz has always been to foster learning. Feel free to jump in there and support that at any time!

I don't wan't to to be rude in any way, but i thought Davids
reasoning on Array operators:

"Using a set probably would have been better, but I didn't know about Ruby sets until after I finished my code. So my solution is a very elegant way of wielding a stone axe."

should have found it's way into the summary, especially as all the
samples given are wielding the same ancient weapon.

or to put it with your own words:

"Then you'll want to look at the standard "set" library.
That will make your whole weekend."

Just a thought of mine, it seemed to be one of the gotchas in this
quiz. Keep up the very good work!

Very good point. Thanks for bringing it up.

James Edward Gray II

···

On Aug 25, 2005, at 4:14 PM, Simon Kröger wrote:

Adam Shelly wrote:

I believe Adam Shelly's parse routine could benefit from similar simplifications
if you want to try your own hand at a little refactoring.

Ok, I admit I'm a ruby newbie. But I'm trying to learn the Ruby Way.
How's this?

Was:

>

[...c-style ruby code...]

Is:
def ParseBoard(file)
    boardlist,size = ,0
    file.each do |line|
        if line.delete!('^0-9A-Za-z_+') =~ /\++/
            @@boxcols= line.length-1
        else
            boardlist += line.split(//).collect{|n| n.hex }
            size = line.length
        end
        p line
    end
    boardlist,size
end

The only difference is it adds 0's to the boardlist where it used to
add -1's, but the solver constructor handles anything outside 1..size
the same, so it doesn't matter.
It doesn't handle malformed input well, but neither did the old
version. That's for another exercise, maybe.

-Adam

much better!

i have another version for you:

def parse_board(file)
   @@boxcols= (s = file.read).scan(/[+-]+/).size() -1
   boardlist = s.scan(/[0-9A-Za-z_]/).map{|c| c.hex}
   return boardlist, Math.sqrt(boardlist.size).to_i
end

assuming that boxcols is the number of boxes in horizontal or
vertical direction, boardlist is one array (e.g. with 81 cells
for a 9x9 board) and the second return parameter is the number
of columns or rows. right?

cheers

Simon

···

On 8/25/05, Ruby Quiz <james@grayproductions.net> wrote:

almost.
boxcols counted the +'s in the horizontal direction (columns), yours
counts vertical (rows).
The difference is important in solving

···

On 8/25/05, Simon Kröger <SimonKroeger@gmx.de> wrote:

i have another version for you:

def parse_board(file)
   @@boxcols= (s = file.read).scan(/[+-]+/).size() -1
   boardlist = s.scan(/[0-9A-Za-z_]/).map{|c| c.hex}
   return boardlist, Math.sqrt(boardlist.size).to_i
end

assuming that boxcols is the number of boxes in horizontal or
vertical direction, boardlist is one array (e.g. with 81 cells
for a 9x9 board) and the second return parameter is the number
of columns or rows. right?

+-----+-----+-----+-----+

1 _ | _ _ | _ _ | _ _ |
_ 2 | 1 _ | _ _ | _ _ |
_ _ | 3 _ | _ _ | _ _ |
_ _ | _ 4 | _ _ | _ _ |

+-----+-----+-----+-----+

_ _ | _ _ | 5 _ | _ _ |
_ _ | _ _ | _ 6 | _ _ |
_ _ | _ _ | _ _ | 7 _ |
_ _ | _ _ | _ _ | _ 8 |

+-----+-----+-----+-----+
vs
+---------+---------+

1 _ _ _ | _ _ _ _ |
_ 2 _ _ | _ _ _ _ |

+---------+---------+

_ 1 3 _ | _ _ _ _ |
_ _ _ 4 | _ _ _ _ |

+---------+---------+

_ _ _ _ | 5 _ _ _ |
_ _ _ _ | _ 6 _ _ |

+---------+---------+

_ _ _ _ | _ _ 7 _ |
_ _ _ _ | _ _ _ 8 |

+---------+---------+

My code handles both puzzles. And it's an easy fix to make it work
with your 'boxrows' instead.

Thanks for the tips.
-Adam