[QUIZ] Weird Numbers (#57) Solution

Here is my solution. Its not the most beautiful thing in the world, but
its effective.

···

-----------------------------------------

def weirdo_exhaustive(from, max)
  puts "none found" and return 0 if max < 70
  (from..max).each do |num|
    if num % 2 == 0
      list, sum= [], 0
      (1...num).each do |div|
        list << div and sum += div if num % div == 0
      end
      puts "==" + num.to_s if sum > num and has_sum(num, list) == false
    end
  end
end

def has_sum(num, array)
  if array.is_a? Integer then return false end
  sum = 0
  array.each do |val| sum += val end
  if sum === num then return true end
  #this next line saves a BUNCH of checks.
  if sum < num then return false end
  array.each do |removeme|
    copy = array.dup
    copy.delete(removeme)
    if copy.size > 1 and has_sum(num, copy) == true then return true
end
  end
  return false
end

----------------------------------------

It took a good number of optimizations that make it less pretty, but
much faster. The first time I ran it it took 4 hours to reach 1,000.
Its faster than that now, but its still somewhere around O(3^n).

SO... I thought of a way to speed up the algorithm a lot! So, with a
*few* more optimizations, here's the weirdo_fast algorithm.

-------------------------------------------------------

def weirdo_fast(max)
  list = [ 70,836,4030,5830,7192,7912,9272,10792,17272,45356,73616, #
  83312,91388,113072,243892,254012,338572,343876,388076, #
        519712,539744,555616,682592,786208,1188256,1229152,1713592, #
        1901728,2081824,2189024,3963968 ]
  list.each do |num|
    puts num if num <= max
  end
  if max > list[list.size-1] then weirdo_exhaustive(list[list.size-1],
max) end
end

-----------------------------------------------------

A little faster, eh? It will start exhaustively searching if your max
is out of its range.... but I warn you, my computer has been
calculating 3963970 for the last 24 hours. And, not the range up to it,
just that number. Remember, its 3^3963970 = 62_286_091_158_062_773_000
which takes a minute to calculate. Well, with my other optimizations,
its a tad faster than that.... a tad.

I'm interested to see if anyone else found a much better way to test
for has_sum(num, array). It seems to me like there must be a clever
mathematical trick for getting the job done. Or perhaps the only clever
way is my "fast" algorithm. But, that's not even that clever.

-Hampton Catlin.
hcatlin@gmail.com

[snip]

I could not find any fast solution..

···

On 12/4/05, Hampton <hcatlin@gmail.com> wrote:

Here is my solution. Its not the most beautiful thing in the world, but
its effective.

--
Simon Strandgaard

# Weird Numbers
# Simon Strandgaard <neoneye@gmail.com>

def divisors(value)
  ary =
  (value/2).times do |i|
    div = i + 1
    ary << div if value % div == 0
  end
  ary
end

$bits =
32.times do |bit|
  $bits << 2 ** bit
end

def has_subset_equal_to(divs, value)
  pairs = divs.zip($bits)
  1.upto(2 ** divs.size - 1) do |i|
    sum = 0
    pairs.each{|div,b| sum+=div if (i&b)>0 }
    return true if sum == value
  end
  false
end

def find_weird_numbers(range_min, range_max)
  ary =
  range_min.upto(range_max) do |value|
    divs = divisors(value)
    sum = divs.inject(0){|a,b|a+b}
    ary << [value, divs] if sum > value
  end
  res =
  ary.each do |value, divs|
    if !has_subset_equal_to(divs, value)
      puts "##{value} is a WEIRD NUMBER"
      res << value
    else
      puts "##{value} is nothing"
    end
  end
  p res
end

p find_weird_numbers(1, 100)

Bingo.

I was actually thinking of screen scraping them from on of the encyclopedias mentioned in the quiz thread, but I like this even better.

Nice job.

James Edward Gray II

···

On Dec 4, 2005, at 7:27 AM, Hampton wrote:

SO... I thought of a way to speed up the algorithm a lot! So, with a
*few* more optimizations, here's the weirdo_fast algorithm.

-------------------------------------------------------

def weirdo_fast(max)
  list = [ 70,836,4030,5830,7192,7912,9272,10792,17272,45356,73616, #
  83312,91388,113072,243892,254012,338572,343876,388076, #
        519712,539744,555616,682592,786208,1188256,1229152,1713592, #
        1901728,2081824,2189024,3963968 ]
  list.each do |num|
    puts num if num <= max
  end
  if max > list[list.size-1] then weirdo_exhaustive(list[list.size-1],
max) end
end

-----------------------------------------------------

A little faster, eh?

#!ruby
=begin

The Quiz was real fun and I spent quite a lot of time on it. Below
source is rather easy, but believe me I tried lots of different ways
(such as dynamic binary knapsacks etc.), most of them suck because they
need to many method calls.

The code takes about 30 seconds to find all Weird Numbers up to 10_000:

             70, 836, 4030, 5830, 7192, 7912, 9272.

The code doesn't scale rather well, the caches would need to be
optimized for that.

=end

class Integer
  # 70, 836, 4030, 5830, 7192, 7912, 9272, 10430
  def weird?
    !has_semiperfect? && !weird2?
  end

  SEMIPERFECT = {nil => 'shortcut'}

  def weird2?(divisors=proper_divisors)
    return true if divisors.any? { |x| SEMIPERFECT[x] }
    if brute(self, divisors)
      SEMIPERFECT[self] = true
    else
      false
    end
  end

  SMALL_SEMIPERFECT = [6, 20, 28] # + [88, 104, 272]

  def has_semiperfect?
    SMALL_SEMIPERFECT.any? { |v| self % v == 0 }
  end

  def proper_divisors
    d = []
    sum = 0
    2.upto(Math.sqrt(self)) { |i|
      if self % i == 0
        d << i << (self / i)
        sum += i + (self / i)
      end
    }
    
    return [nil] unless sum > self
    d << 1
  end

  def brute(max, values)
    values.sort!

    values.delete max / 2
    max = max / 2

    s = values.size
    (2**s).downto(0) { |n|
      sum = 0
      s.times { |i| sum += values[i] * n[i] }
      return true if sum == max
    }
    false
  end
end

if ARGV[0]
  n = Integer(ARGV[0])
else
  n = 10_000
end

2.step(n, 2) { |i|
  p i if i.weird?
}

__END__

···

--
Christian Neukirchen <chneukirchen@gmail.com> http://chneukirchen.org

Here is my solution (it's optimized for statistics not for speed).
I don't use things like someone tried all odd numbers up to 10**18
because doesn't change the algorithm.. I'll use that in my speed
optimized version..

···

#############

=begin

References:



Eric W. Weisstein. "Weird Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/WeirdNumber.html
Eric W. Weisstein. "Semiperfect Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SemiperfectNumber.html
Eric W. Weisstein. "Perfect Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PerfectNumber.html
Eric W. Weisstein. "Divisor Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivisorFunction.html
Eric W. Weisstein. "Mersenne Prime." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/MersennePrime.html
Eric W. Weisstein. "Abundance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Abundance.html

=end

class Integer
   $prime_factors = Hash.new # we cache prime factors...
   def prime_factors position = -1
     if cached = $prime_factors[self] # cached?
       return cached # yes
     end

     if self == 1 # we have 1 we are done
       return $prime_factors[self]=[] # return no factors
     elsif position<0 # we havn't reached factor 5 yet
       if self&1 == 0 # test factor 2
         return $prime_factors[self]=[2,*(self>>1).prime_factors]
       elsif self%3 == 0 # and factor 3
         return $prime_factors[self]=[3,*(self/3).prime_factors]
       end
     end

     loop do
       position+=6 # increment position by 6
       if position*position > self # we have a prime number return it
         return $prime_factors[self]=[self]
       elsif (quo,rem = divmod(position)) and rem.zero? # test 6n-1
         return $prime_factors[self]=[position,*quo.prime_factors(position-6)]
       elsif (quo,rem = divmod(position+2)) and rem.zero? # and 6n+1
         return $prime_factors[self]=[position+2,*quo.prime_factors(position-6)]
       end
     end
   end

   def distinct_prime_factors # rle encode the prime factors :wink:
     distinct_prime_fac = Hash.new{0} # setup the hash
     prime_factors.each do |prime_factor| # fill it
       distinct_prime_fac[prime_factor]+=1
     end
     distinct_prime_fac.to_a.sort_by{|(fac,count)|fac} # and return it as sorted array
   end

   def divisors # get the divisors (not needed for divisor sum)
     divs = [] # store divisors here
     n = 1 # start with 1
     loop do
       break if n*n > self # done
       if (qua,rem = divmod(n)) and rem.zero? # test for division
         divs << qua # add divisors
         divs << n
       end
       n+=1
     end
     divs.uniq.sort[0..-2] # we don't want self
   end

   def semi_perfect? deficient=false # final test
     cached_abundance = abundance
     return deficient if cached_abundance < 0 # deficient return the argument
     return true if cached_abundance == 0 # perfect => semi perfect too

     possible_values = {0=>true} # store all possible values in a hash
     divs = self.divisors # get the divisors

     div_sum_left = divs.inject(0){|a,b|a+b} # get the divisor sum

     pos_2 = div_sum_left - self # this is a possibility too

     divs.reverse.each do |div| # for each divisor
       possible_values.keys.each do |value| # and each possible value
         if value+div_sum_left < self # check wether it can reach the number with the divisors left
           possible_values.delete(value) # if not delete the number (huge speedup)
         end

         new_value = value+div # we create a new possible value including the divisor

         if new_value == self or new_value == pos_2 # if it is the number it's semi perfect
           return true
         elsif new_value < self # if it's less than the number it could be semi perfect
           possible_values[new_value]=true # add it to the possiblities
         end # if it's more than the value we can ignore it
       end
       div_sum_left-=div # the current divisor isn't left anymore
     end
     false # we found no way to compose the number using the divisors
   end

   def restricted_divisor_sum # uses the formular from wikipedia
     distinct_prime_factors.map do |(fac,count)|
       comm_sum = 1
       comm_mul = 1
       count.times do
         comm_sum += (comm_mul*=fac)
       end
       comm_sum
     end.inject(1){|a,b|a*b}-self
   end

   def perfect? # perfect numbers have the form 2**(n-1)*(2**n-1) where n is prime (and small :wink: )
     return false if self&1 == 1 # it isn't known weather there are odd perfect numbers.. but it's irrelevant for my algorithm
     doubled = self * 2 # the perfect number is a triangular number of the form (n*(n+1))/2
     doubled_root = Math.sqrt(doubled).floor # if we double it and take the floored square root we get n
     return false unless doubled == doubled_root*(doubled_root+1) # if we don't get n it isn't perfect
     doubled_root_string = (doubled_root+1).to_s(2) # from the first line we know n+1 has to be of the form 2**n
     return false unless doubled_root_string.count('1')==1 # we check that here
     return false unless (doubled_root_string.size-1).prime_factors.size == 1 # and n ha to be a prime
     return false unless self.abundance == 0 # if it passes all the earlier test we check it using the abundance
     true # and if it passes it's perfect
   end

   def abundance
     self.restricted_divisor_sum-self
   end
end

require 'benchmark'

max_num = Integer(ARGV.shift||'1000') rescue 1000 # read a number from the command line

new_semi_perfects = [] # store semi perfect numbers that can't be constructed using other semi perfect numbers

STDOUT.sync = true
puts "Weird Numbers Up To #{max_num}:"

#begin_stat
perfect_count = 0
composed_semi_perfect_count = 0
new_semi_perfect_count = 0
weird_count = 0
deficient_count = 0

record_nums = (1..80).map{|n|max_num*n/80}

record_nums_left = record_nums.dup
next_record = record_nums_left.shift

recorded_times = []

init_time = [Benchmark.times,Time.now]

min_odd = 10**17

#end_stat

   (1..max_num).each do |test_num| # counting loop

     if test_num == next_record #stat
       recorded_times << [Benchmark.times,Time.now] #stat
       next_record = record_nums_left.shift #stat
     end #stat

     if test_num.perfect? # it's perfect
       new_semi_perfects << test_num
       perfect_count += 1 #stat
       next
     end

     do_next = false
     new_semi_perfects.each do |semi_per|
       if test_num % semi_per == 0 # is it possible to compose the current number using a semi-perfect number?
         do_next = true # yes
         composed_semi_perfect_count += 1 #stat
         break
       end
     end
     next if do_next
     # no

     case test_num.semi_perfect? nil # we don't care about deficient numbers
     when true # but we care about semi perfects
       new_semi_perfects << test_num
       new_semi_perfect_count += 1 #stat
     when false # and even more about abundand non semi perfects
       puts test_num
       weird_count += 1 #stat
     else #stat
       deficient_count += 1 #stat
     end

   end

#end

#begin_stat

final_time = [Benchmark.times,Time.now]

digit_length = max_num.to_s.size

def form_float(num)
   "%12s" % ("%im%#{7}ss" % [(num/60).floor,("%.4f" % (num %60))]).tr(" ","0")
end

def rel(x,y)
   "%#{y.to_s.size}i (%6s%%)" % [x,"%3.2f" % (x/y.to_f*100)]
end

puts "Stats"
puts "Time:"
puts "- User: "+form_float(ut = final_time.first.utime - init_time.first.utime)
puts "- System: "+form_float(st = final_time.first.stime - init_time.first.stime)
puts "- U+S: "+form_float(ut+st)
puts "- Real: "+form_float(final_time.last - init_time.last)
puts
puts "Numbers:"
puts "- Total "+rel(max_num,max_num)
puts "- Weird "+rel(weird_count,max_num)
puts "- Perfect "+rel(perfect_count,max_num)
puts "- Deficient "+rel(deficient_count,max_num)
puts "- Abundand "+rel(abundand_count = max_num-perfect_count-deficient_count,max_num)
puts "- Semi-Perfect "+rel(abundand_count-weird_count,max_num)
puts " (w/o perfects)"
puts ""
puts "- Passed 1st "+rel(max_num-perfect_count,max_num)
puts " (perfect test)"
puts "- Passed 2nd "+rel(new_semi_perfect_count+weird_count+deficient_count,max_num)
puts " (composed test)"
puts "- Passed 3rd "+rel(new_semi_perfect_count+weird_count,max_num)
puts " (deficient test)"
puts "- Uncomposed "+rel(new_semi_perfects.size,max_num)
puts " (semi-perfects that arn't a multiply of another semi-perfect)"
puts

if recorded_times.size >= 80
   puts "Graphs:"
   puts

   process_plot = []
   real_plot = []

   first_ustime = init_time.first.utime+init_time.first.stime
   first_realtime = init_time.last

   recorded_times.each do |(process_time,realtime)|
     process_plot << process_time.utime+process_time.stime - first_ustime
     real_plot << realtime - first_realtime
   end

   max_process = process_plot.last
   step_process = max_process / 22

   max_real = real_plot.last
   step_real = max_real / 22

   def plot(plot_data,max,step)
     22.downto(0) do |k|
       res = ""
       res = form_float(max) if k == 22
       while res.size != plot_data.size
         val = plot_data[res.size]
         lower_range = k*step
         res << ( val >= lower_range ? (val < lower_range+step ? '#' : ':') : ' ' )
       end
       puts res
     end
   end

   puts "Y: Realtime X: Number"
   plot(real_plot,max_real,step_real)
   puts "%-40s%40s"% [1,max_num]
   puts "Y: System+Usertime X: Number"
   plot(process_plot,max_process,step_process)
   puts "%-40s%40s"% [1,max_num]
   puts
end
#end_stat

__END__
--
Jannis Harder

I've got an optimization I haven't seen anyone else use yet. My
solution is roughly 20% faster than Ryan's.

The trick is that any number of the form k*(2^m)*p where m > 1 and p
is a prime such that 2 < p < 2^(m+1) is semiperfect (according to
wikipedia). This rules out many numbers, and its cheaper than a
thorough search of subsets.

#!/usr/bin/ruby

def weird(max)
  primes = sieve(max*2)
  70.step(max,2){|n|
    puts n if weird?(n,primes)
  }
end

def weird?(n,primes)
  divs = divisors(n)
  abund = divs.inject(0){|a,b| a+b} - n
  return false if abund <= 0
  return false if spfilter(n,primes)
  return false if divs.include? abund
  smalldivs = divs.reverse.select{|i| i < abund}
  not sum_in_subset?(smalldivs,abund)
end

def sum_in_subset?(lst,n)
  #p [lst,n]
  return false if n < 0
  return true if lst.include? n
  return false if lst.size == 1
  first = lst.first
  rest = lst[1..-1]
  sum_in_subset?(rest, n-first) or sum_in_subset?(rest,n)
end

def divisors(n)
  result = []
  sr = Math.sqrt(n).to_i
  (2 .. sr).each {|d|
    if n.modulo(d) == 0
      result << d
    end
  }
  return [1] if result.empty?
  hidivs = result.map {|d| n / d }.reverse
  if hidivs[0] == result[-1]
    [1] + result + hidivs[1..-1]
  else
    [1] + result + hidivs
  end
end

def spfilter(n,primes)
  m = 0
  save_n = n
  while n[0]==0
    m += 1
    n >>= 1
  end
  return false if m == 0
  low = 2
  high = 1 << (m+1)
  primes.each {|p|
    return false if p > high
    if p > low
      return true if n%p == 0
    end
  }
  raise "not enough primes while checking #{save_n}"
end

# Sieve of Eratosthenes
def sieve(max_prime)
  candidates = Array.new(max_prime,true)
  candidates[0] = candidates[1] = false
  2.upto(Math.sqrt(max_prime)) {|i|
    if candidates[i]
      (i+i).step(max_prime,i) {|j| candidates[j] = nil}
    end
  }
  result = []
  candidates.each_with_index {|prime, i| result << i if prime }
  result
end

weird(ARGV[0].to_i)

regards,
Ed

I have a solution for the "effectively useless" basket. It's a naive
algorithm, and I haven't yet received a number above 70 from it.

The advantages are that it's straightforward idiomatic Ruby, and core of the
algorithm is expressed about as tersely as Martin's definition. And I like
my ArraySubsetList class.

class Fixnum
    def divisors
        (1..self).select {|i| self % i == 0 }
    end
end
module Enumerable
    def sum
        inject(0) {|m, o| m + o }
    end
end
class Array
    def subsets
        ArraySubsetList.new(self)
    end
end
class ArraySubsetList
    def initialize(array)
        @array = array
    end
    def [](index)
        return nil unless (0...size) === index
        ret = []
        @array.size.times {|i| ret << @array[i] if index[i] == 1 }
        ret
    end
    def each
        size.times {|bits| yield self[bits] }
    end
    include Enumerable
    def size
        1 << @array.size
    end
    alias length size
end
def wierd_numbers_up_to(max)
    ret = []
    for n in 1..max
        # A weird number is defined as a number, n, such that the sum of all
its divisors
        # (excluding n itself) is greater than n, but no subset of its
divisors sums up to
        # exactly n.
        divs = n.divisors
        divs.delete i
        if divs.sum > i &&
           divs.subsets.select {|subset| subset.sum == i }.empty?
            ret << i
            yield i if block_given?
        end
    end
    ret
end
if $0 == __FILE__
    if ARGV.size == 1 && (ARGV[0].to_i rescue 0) > 0
        wierd_numbers_up_to(ARGV[0].to_i) {|n| puts n }
    else
        puts "usage: #$0 n\n Find all weird numbers less than n"
    end
end

Cheers,
Dave

Here is my solution, I don't think it is as fast as the others, but it
does never calculate a list of divisors. It scales quite badly

max time

···

----------------
1000 0m0.714s
2000 0m2.756s
3000 0m6.351s
4000 0m13.404s
5000 0m16.806s
6000 0m27.031s
7000 0m33.482s
8000 0m44.111s
9000 0m54.781s
10000 1m6.179s

bschroed@black:~/svn/projekte/weird-numbers$ cat weird-numbers-be.rb
#!/usr/bin/ruby

# Break early version, checking if a number is weird
def weird_number(n)
  d = r = s = nil
  sum = 0
  subset_sums = Hash.new
  subset_sums[0] = true
  for d in 1...n
    next unless n % d == 0
    # Calculate sum of all divisors
    sum += d
    # Calculate sums for all subsets
    subset_sums.keys.each do | s |
      return false if s + d == n
      subset_sums[s + d] = true
    end
  end
  sum > n
end

def weird_numbers(range)
  range.select { | n | weird_number(n) }
end

# Argument parsing
raise "Input exactly one number" unless ARGV.length == 1

max = ARGV[0].to_i

# Call it
puts weird_numbers(1..max)

cheers,

Brian

James,

I was starting to do that... I was building my HTTP object, and I
noticed how hard it was going to be to parse...... so I said screw it,
I'll make it easier.

And FASTER!

It would even run with 6k of ram!

-h.

Here is my solution.
<http://tinyurl.com/9qjfg> (needs data-url support in your browser)

I basically used the definition of a "weird number" to implement the
solution. This makes the code pretty, but also really, really slow.

···

On 12/4/05, Simon Strandgaard <neoneye@gmail.com> wrote:

---

#!/usr/bin/ruby

# Rubyquiz #57 -- Weird Numbers
# -----------------------------
# Levin Alexander <levin@grundeis.net>

module Enumerable
  def sum
    inject(0) {|s,elem| s+elem}
  end
end

class Array
  def subsets
    (0...2**length).collect {|i|
       values_at(*(0...length).find_all {|j| i&(1<<j)>0 })
    }
  end
end

class Integer
  def abundant?
    divisors.sum > self
  end

  def semiperfect?
    divisors.subsets.any? { |set| set.sum == self }
  end

  def weird?
    abundant? and not semiperfect?
  end

  def divisors
    (1...self).select { |i| self % i == 0 }
  end
end

if __FILE__ == $0
  0.upto(ARGV[0].to_i) { |i|
    if i.weird?
      puts i
    else
      warn "#{i} is not weird" if $DEBUG
    end
  }
end

I don't know, I think this is cheating. Plus he is missing a bunch of
weird numbers in his list.

Ryan

···

On 12/4/05, James Edward Gray II <james@grayproductions.net> wrote:

On Dec 4, 2005, at 7:27 AM, Hampton wrote:

> SO... I thought of a way to speed up the algorithm a lot! So, with a
> *few* more optimizations, here's the weirdo_fast algorithm.
>
> -------------------------------------------------------
>
> def weirdo_fast(max)
> list = [ 70,836,4030,5830,7192,7912,9272,10792,17272,45356,73616, #
> 83312,91388,113072,243892,254012,338572,343876,388076, #
> 519712,539744,555616,682592,786208,1188256,1229152,1713592, #
> 1901728,2081824,2189024,3963968 ]
> list.each do |num|
> puts num if num <= max
> end
> if max > list[list.size-1] then weirdo_exhaustive(list[list.size-1],
> max) end
> end
>
> -----------------------------------------------------
>
> A little faster, eh?

Bingo.

I was actually thinking of screen scraping them from on of the
encyclopedias mentioned in the quiz thread, but I like this even better.

Nice job.

Here's my solution. It looks pretty close to others. Not too fast, but
it gets the job done. I think after I get a chance to look at other
solutions I can write a some of this better.

class Integer
    def divisors
        divs = []
        1.upto(Math.sqrt(self).to_i) do |i|
            divs += [i ,self/i].uniq if (self%i == 0)
        end
        divs.sort.reverse #reverse speeds things up a bit
    end

    def weird?
        divs = self.divisors - [self]
        return false if divs.sum < self
        divs.each_combination do |comb|
            return false if comb.sum == self
        end
        return true
    end
end

class Array
    def each_combination
        (2**self.length).times do |comb|
            curr = []
            self.length.times do |index|
                curr << self[index] if(comb[index] == 1)
            end
            yield curr
        end
    end

    def sum
        inject(0) { |sum, i| sum + i }
    end
end

max = (ARGV[0] || 10000).to_i

max.times do |i|
    puts i if i.weird?
end

-----HornDude77

Same here - I tried a bunch of stuff, but the code ended up being rather
slow, so I discarded it. It's still rather slow :frowning:

N = ARGV[0].to_i

# precalculate the list of primes

def primes_to(n)
  sieve = (0..n).to_a
  2.upto(n) {|i|
    next unless sieve[i]
    (i*i).step(n, i) {|j| sieve[j] = nil}
  }
  sieve[2..-1].compact
end

PRIMES = primes_to(N)

# helper method
class Array
  def bsearch(n)
    i = 0
    j = size - 1
    k = (i+j)/2
    while i < k
      if at(k) > n
  j = k
      elsif at(k) < n
  i = k
      else
  return k
      end
      k = (i+j)/2
    end
    return i
  end
end
      
# factorisation routines - find the prime factors, then combine them to get a
# list of all factors

def prime_factors(x)
  pf = Hash.new {|h, k| h[k] = 0}
  PRIMES.each {|p|
    break if p > x
    while x % p == 0
      pf[p] += 1
      x /= p
    end
  }
  pf
end

def expand_factors(f, pf)
  return f if pf.empty?
  p, n = pf.shift
  powers = [p]
  (n-1).times { powers << p * powers[-1] }
  g = f.dup
  powers.each {|i| f.each {|j| g << i*j } }
  expand_factors(g, pf)
end

def factors(n)
  a = expand_factors([1], prime_factors(n)).sort
  a.pop
  a
end

# and finally, the weirdness test

def weird?(n)
  fact = factors(n)

···

Christian Neukirchen <chneukirchen@gmail.com> wrote:

#!ruby
=begin

The Quiz was real fun and I spent quite a lot of time on it. Below
source is rather easy, but believe me I tried lots of different ways
(such as dynamic binary knapsacks etc.), most of them suck because they
need to many method calls.

  #
  # test for abundance (sum(factors(n)) > n)
  sum = fact.inject {|a, i| a+i}
  return false if sum < n # weird numbers are abundant
  
  # now the hard part
  partials = [0]
  
  fact.each {|f|
    if sum < n
      # discard those partials that are lower than the sum of all remaining
      # factors
      i = partials.bsearch(n-sum)
      return false if partials[i] == (n-sum)
      partials = partials[(i+1)..-1]
    end

    sum -= f # sum of all remaining factors
    temp =
    
    partials.each {|p|
      j = f + p
      break if j > n
      l = n - j
      next if l > sum
      return false if (j == n) or (l == sum)
      temp << j
    }

    # handwriting a merge sort didn't help :-/
    partials = partials.concat(temp).sort.uniq
  }

  return true
end

def all_weird(n)
  weird =
  # odd numbers are not weird (unproven but true for all n < 10^17)
  2.step(n, 2) {|i| weird << i if weird?(i) }
  weird
end

require 'benchmark'

Benchmark.bm(10) {|x|
  [1000,10000,20000].each {|n|
    x.report("#{n}") {p all_weird(n)}
  }
}

martin

Wow, I got a lot from looking at the other solutions. Thanks especially
to Ed, Ryan, Jannis and Christian. I see that the single biggest
performance gain comes from using a recursive sum_in_subset? method such
as that found in Ed's solution. I've borrowed from his code for this
fairly simple and straightforward resubmission. It doesn't perform as
well as the faster solutions, but it's much, much faster than my first
submission.

#!/usr/bin/env ruby

···

#
# Ruby Quiz Weird Numbers solution.
# Uses recursive sum_in_subset? approach borrowed from
# other solutions.
#

class Integer

  def weird?
    divisors = self.divisor_list
    abundancy = divisors.inject { |total,x| total += x } - self
    return false unless abundancy > 0
    smalldivisors = divisors.reverse.select { |j| j <= abundancy }
    return false if sum_in_subset?(smalldivisors, abundancy)
    return true
  end

  def sum_in_subset?(list, target)
    return false if target < 0
    return true if list.include?(target)
    return false if list.length == 1
    first = list.first
    rest = list[1..-1]
    sum_in_subset?(rest, target-first) or sum_in_subset?(rest, target)
  end

  def divisor_list
    list = []
    (1..Math.sqrt(self).to_i).each do |x|
      if self % x == 0
        list << x
        list << (self / x) unless x == 1 or (self / x) == x
      end
    end
    return list.sort
  end

end

####################

unless ARGV.length == 1
  puts "Usage: #{$0} <max_value>"
end
max_value = ARGV.shift.to_i
(1..max_value).each { |n| puts n if n.weird? }

--
Posted via http://www.ruby-forum.com/.

I was impressed when I started going through 1..1000 in under 15
seconds, so this is much slower than others report. I'm just going to
tell myself you all have much faster computers, and go to bed.

require 'set'

class Subsets
  def initialize(set, start)
    @set = set.to_a.uniq.sort
    @num_elements = start - 1
    @map = {}
    @set.each_with_index {|k, v| @map[k] = v+1}
  end

  # returns each subset, in turn. Returns nil when there are no more
  def succ
    if @combo == nil or @combo == @set[-@num_elements..-1]
      return nil if (@num_elements +=1) > @set.length
      @combo = @set[0,@num_elements]
    else
      index = (1..@num_elements).find {|i| @combo[-i] < @set[-i]}
      @combo[-index, index] = @set[@map[@combo[-index]], index]
    end
    @combo
  end

  def find
    while(x = succ)
      break if yield x
    end
    x
  end
end

class Integer

  def proper_divisors
    return if self < 2
    div = Set.new [1]
    2.upto(Math.sqrt(Float.induced_from(self)).to_i) {|i|
      quotient, modulus = self.divmod(i)
      div.merge([i,quotient]) if modulus.zero?
    }
    div.to_a.sort
  end

  def abundant?
    self > 11 and [0].concat(proper_divisors).inject {|sum,n| sum += n}

self

  end

  def semiperfect?
    return nil if self < 6
    subsets = Subsets.new(proper_divisors, 2)
    subsets.find {|subset| [0].concat(subset).inject {|sum,n| sum += n}
== self }
  end

  def weird?
    self > 69 and abundant? and not semiperfect?
  end
end

n = gets.strip
exit if n =~ /\D/ or n !~ /[^0]/
p (1..n.to_i).find_all {|i| i.weird? }

···

--
Posted via http://www.ruby-forum.com/\.

Here is my solution. It is pretty fast, but not quite as fast as
Rob's. For example his takes 6.797 seconds to calculate all weird
numbers up to 50000, whereas mine takes 7.375. Our solutions are quite
similar. Some of the other solutions are REALLY SLOW though. Probably
one of the biggest optimizations was using the square root of a given
number to calculate half the divisors, then use those to get the other
half. For example if 2 is a divisor of 14, then so is 14/2 = 7. For
big numbers this can be a massive speed-up.

Ryan

class Array
  def sum
    inject(0) do |result, i|
      result + i
    end
  end
end

class Integer
  def weird?
    # No odd numbers are weird within reasonable limits.
    return false if self % 2 == 1
    # A weird number is abundant but not semi-perfect.
    divisors = calc_divisors
    abundance = divisors.sum - 2 * self
    # First make sure the number is abundant.
    if abundance > 0
      # Now see if the number is semi-perfect. If it is, it isn't weird.
      # First thing see if the abundance is in the divisors.
      if divisors.include?(abundance)
        false
      else
        # Now see if any combination sums of divisors yields the abundance.
        # We reject any divisors greater than the abundance and reverse the
        # result to try and get sums close to the abundance sooner.
        to_search = divisors.reject{|i| i > abundance}.reverse
        sum = to_search.sum
        if sum == abundance
          false
        elsif sum < abundance
          true
        else
          not abundance.sum_in_subset?(to_search)
        end
      end
    else
      false
    end
  end

  def calc_divisors
    res=[1]
    2.upto(Math.sqrt(self).floor) do |i|
      if self % i == 0
        res << i
      end
    end
    res.reverse.each do |i|
      res << self / i
    end
    res
  end

  def sum_in_subset?(a)
    if self < 0
      false
    elsif a.include?(self)
      true
    else
      if a.length == 1
        false
      else
        f = a.first
        remaining = a[1..-1]
        (self - f).sum_in_subset?(remaining) or sum_in_subset?(remaining)
      end
    end
  end
end

if $0 == __FILE__
  if ARGV.length < 1
    puts "Usage: #$0 <upper limit>"
    exit(1)
  end

  puts "Weird numbers up to and including #{ARGV[0]}:"
  70.upto(ARGV[0].to_i) do |i|
    puts i if i.weird?
  end
end

I don't know, I think this is cheating.

It's cheating to get correct answers quickly? :wink:

Plus he is missing a bunch of weird numbers in his list.

I haven't compared the Array in question with the posted sequences. Perhaps it's not very complete. Let me ask you this though, since we're talking about this: Which is easier to debug, the sequence list or a broken calculation solution?

Didn't the solution also brute force answers when it left its list of known numbers?

One last question: How well does your presumably fast solution do when it goes beyond the listed sequence? Does it still find lots of answers, quickly?

I'm really not trying to be mean here and I apologize if I'm coming off that way.

I think what Hampton hit on is a simple cache optimization. It's fast and very effective. I don't think we should be so quick to toss it out as a viable approach...

James Edward Gray II

···

On Dec 4, 2005, at 11:29 AM, Ryan Leavengood wrote:

Here's mine.
I started out with very straightforward programming, but ended up
making it muddier as I optimized. I also implemented a bunch of
functions that I figured I could probably find alread written if I
looked, but I figured they were good exercises : Integer#factors,
Integer#divisors, Array#all_combinations....

I thought it was pretty fast, especially compared to my initial
implementation. Then I timed Ryan's on my machine... Oh well. I
enjoyed the challenge.

-Adam

···

---
class Integer
  def weird?
    (d = divisors).pop #remove self (which is always last)
    d.sum > self &&
      !d.quick_find_subset_with_sum(self) && #weed out most
      !d.find_subset_with_sum(self) #confirm the rest
  end

  def divisors
    factors.all_combinations.uniq.inject([]){|result,combo|
      result << combo.product
    }.sort.uniq
  end

  def factors
    value, candidate = self, 3
    factors = [1]
    while value % 2 == 0
      factors << 2
      value /= 2
    end
    while candidate <= Math.sqrt(value)
      while value % candidate == 0
        factors << candidate
        value /= candidate
      end
      candidate += 2
    end
    factors << value if value != 1
    factors
  end
end

class Array
  def product
    inject(1){|p,v| p*v}
  end
  def sum
    inject(0){|s,v| s+v}
  end
  def all_combinations
    ComboIndexGenerator.new(self.size).inject([]) {|result, index_set|
      result << values_at(*index_set)
    }
  end

  #this was my first attempt, which was straightforward,
   # but slow as heck for large sets
  def slow_find_subset_with_sum n
    return nil if sum < n
    all_combinations.each {|set|
      return set if set.sum == n
    }
    nil
  end

  #this is my second attempt which is fast but misses some subsets.
  #but it is useful for quickly rejecting many non-weird numbers.
  def quick_find_subset_with_sum n
    a = self.sort.reverse
    sum,set = 0,[]
    a.each {|e|
      if (sum+e <= n)
        sum+=e
        set<<e
      end
      return set if sum == n
    }
    nil
  end

  #this one works pretty quickly...
  #it never tests subsets which are less than the sum,
  #and keeps track of sets it has already calculated
  def find_subset_with_sum n
    possibilities, seen = [self],{}
    until possibilities.empty?
      candidate = possibilities.pop
      diff = candidate.sum - n
      return candidate if diff == 0
      break if diff < 0
      candidate.each_with_index{|e,i|
        break if e > diff
        new_cand = (candidate.dup)
        new_cand.delete_at(i)
        return new_cand if e == diff
        possibilities << new_cand if !seen[new_cand]
        seen[new_cand]=true
      }
    end
    nil
  end
end

#this class generates an all the possible combinations of n items
#it returns an array with the next combination every time you call #next
class ComboIndexGenerator
  include Enumerable
  def initialize nitems
    @n = nitems
    @max = 2**@n
    @val=0
  end
  def to_a
    return nil if @val==@max
    (0..@n).inject([]){|a,bit| a<<bit if @val[bit]==1; a}
  end
  def next
    @val+=1 if @val<@max
    to_a
  end
  def each &b
      yield to_a
    while (n=self.next)
      yield n
    end
  end
end

if $0 == __FILE__

if ARGV.length < 1
   puts "Usage: #$0 <upper limit>"
   exit(1)
end

puts "Weird numbers up to and including #{ARGV[0]}:"
70.upto(ARGV[0].to_i) do |i|
   puts i if i.weird?
end
end

Mine's *really* fast up to 3,963,968.... then it slows down just a
*tad*. :wink:

For instance, mine can do up to 50,000 in 0.0012 seconds on a 300mhz
processor.
And it can do 3 million in 0.014338 seconds.

Actually, I think I can speed up my exhausted.... {walks away to code}

[snip]

  def sum_in_subset?(a)
    if self < 0
      false
    elsif a.include?(self)
      true
    else
      if a.length == 1
        false
      else
        f = a.first
        remaining = a[1..-1]
        (self - f).sum_in_subset?(remaining) or sum_in_subset?(remaining)
      end
    end
  end
end

nice and speedy.. mine is awful and slow.

···

On 12/4/05, Ryan Leavengood <leavengood@gmail.com> wrote:

--
Simon Strandgaard